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Abstract

This paper presents an analytical study of the forced convection heat transfer characteristics in high porosity open-cell metal-foam
filled pipes. The Brinkman-extended Darcy momentum model and two-equation heat transfer model for porous media were employed.
Based on the analytical solutions, the velocity and temperature distributions in metal-foam filled pipes were obtained. The effects of the
microstructure of metal foams on overall heat transfer were examined. The results show that the pore size and porosity of metal-foams
play important roles on overall heat transfer performance. The use of metal-foam can dramatically enhance the heat transfer but at the
expense of higher pressure drop.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

As a new material, metal-foams are attracting increasing
attention for a variety of applications. The advantages of
metal-foams lie on their low-density, large surface area in
a limited volume and high strength structure. Due to high
manufacturing costs metal-foams have, until recently,
mainly been used in the aerospace, ship-building and
defence industries. More recently, the development of the
metal sintering method for foam manufacture has led to
decreasing manufacturing costs and an increasing range
of applications including heat and mass transfer [1–7]. To
effectively use metal-foam materials in heat exchange
devices it is necessary to combine the material with tubes
and sheets for flow separation and heat transfer. Develop-
ment efforts have taken place at Porvair Fuel Cell Techno-
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2005.12.012

* Corresponding author. Address: Department of Mechanical Engineer-
ing, School of Engineering and Design, Brunel University, Uxbridge,
Middlesex, UB8 3PH, UK. Tel.: +44 01895266697/+86 02982668036.

E-mail addresses: chang-ying.zhao@Brunel.ac.uk, cyzhao@mail.xjtu.
edu.cn (C.Y. Zhao).
logy to successfully combine a variety of metal-foam
materials with solid structures, and metal-foam filled tubes
have also been manufactured. Data presented in this paper
are based on metal-foams attached to the solid structure
using a Porvair proprietary co-sintering technique.

The expanding range of applications is also leading to
increased interest in the study of the thermal and transport
phenomena in high porosity open-cell metal foams. Bhat-
tacharya et al. [1] determined the thermo-physical proper-
ties of high porosity metal foams, such as effective
thermal conductivity (ke), permeability (K) etc., based on
comprehensive analytical and experimental investigations.
Boomsma and Poulikakos [2] developed an effective ther-
mal conductivity model based on the idealized three-
dimensional cell geometry of a foam which was validated
experimentally. This was similar to the model proposed
by Calmidi [3] and Calmidi and Mahajan [4] who per-
formed experimental studies with a wide variety of alumin-
ium foams. Zhao et al. [5,6] conducted experimental and
numerical studies for air-cooling forced convection in
FeCrAlY metal-foam filled plate channels. Zhao et al. [6]
and Phanikumar and Mahajan [7] also presented numerical
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Nomenclature

ea surface area density (m�1)
cp heat capacity of fluid (J/kg K)
Da Darcy number, K/R2

df diameter of the fibre of metal foams (m)
dp pore size (m)
f friction factor
h heat-transfer coefficient (W/m2 K)
hsf interfacial heat-transfer coefficient of metal

foams (W/m2 K)
k thermal conductivity (W/m K)
ke effective thermal conductivity (W/m K)
K permeability (m2)
Nu Nusselt number, 2hR/kf

Nusf local Nusselt number hsfdp/kf

p pressure (Pa)
P dimensionless pressure
Pr Prandtl number, cplf/k
qw heat flux (W/m2)
R pipe radius (m)
Re Reynolds number, 2uR/t
Red local Reynolds number, ud/t
T temperature (K)
u velocity along z direction, Vz (m/s)

um mean fluid velocity along z direction (m/s)
U dimensionless velocity along z direction, u/um
~V velocity vector

Greek symbols

e porosity
h dimensionless temperature, T�T w

qwR=kse

R sum
q density (kg/m3)
lf dynamic viscosity (kg/m s)
t kinematic viscosity (m2/s)
w dimensionless radial coordinate, r/R

Subscripts

s solid
f fluid
w wall

Others

h i volume averaged value
$ total differential
o partial differential
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and experimental results for Non-Darcy natural convection
in high porosity metal foams.

In principle, high porosity metal-foams with open cells
can be treated as a porous medium. Darcy [8] first summa-
rised the correlation for the flow in porous media based on
experimental observations. He discovered that the area-
averaged fluid velocity through a column of porous mate-
rial is proportional to the pressure gradient established
along the column. Subsequent experiments proved that
the area-averaged velocity is, in addition, inversely propor-
tional to the viscosity (l) of the fluid seeping through the
porous material. For a one-dimensional forced flow,
Darcy’s law can be represented as u ¼ K

l h� dP
dxi, where K

is an empirical constant called permeability.
Darcy’s law, however, neglects the viscous force acting

along the impermeable surface (solid boundary) and for
this reason, when the Reynolds number based on the pore
diameter for the channel/pipe flows exceeds 1–10, signifi-
cant deviations from test results were found [9]. To solve
this problem, the Brinkman-extended Darcy model [10]
was proposed to consider the effect of the impermeable
boundary, and has since been extensively used for non-
Darcy flows [11–13]. Zhao and Lu [11] and Kim et al.
[12] both used the Brinkman-extended Darcy model for
the analyses of channel heat sinks. Nazar et al. [13] applied
the model for the theoretical study of the mixed convective
boundary layer flow past a horizontal circular cylinder
embedded in a porous medium. In the present study, the
Brinkman-extended Darcy model is employed as the
momentum equation to analyse the velocity distribution
in metal-foam filled pipes.

For modelling the heat transfer in a porous medium, the
one-equation equilibrium model or the two-equation
non-equilibrium model are commonly used [8]. The one-
equation equilibrium model assumes that there is no tem-
perature difference between the local fluid and solid phase
while the two-equation non-equilibrium model treats the
fluid and solid separately, considering the local tempera-
ture difference between them. The latter is more difficult
to apply because it requires information on the interfacial
heat-transfer coefficient, which is usually determined
through experimental investigations. Owing to this diffi-
culty, some investigators have used the one-equation model
for the analysis of convection heat transfer in a general
porous medium [13]. However, the one equation model is
only valid when the local temperature difference between
fluid and solid is negligibly small. This will not be the case
in heat exchanger applications where the difference in the
thermal conductivities of the fluid and solid is significant
[4,5] and for this reason the two-equation non-equilibrium
heat transfer model is used to study the heat transfer per-
formance of metal-foam filled pipes. To obtain the inter-
facial heat-transfer coefficient of open-cell metal foams,
the correlation based on a three-dimensional cross-cylinder
representation [14] will be employed.

Although, as indicated above, some investigations of
heat transport in open-cell metal-foams have been carried
out the work has mainly concentrated on metal-foam plate



Fig. 1. Metal-foam filled tubes using co-sintering technique.
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channels. No work has been presented, as yet, in the open
literature on metal-foam filled pipe flows and associated
heat exchangers, which have significant potential applica-
tions in industry.

This paper presents an analytical study of forced flow
heat transfer in metal-foam filled pipes (shown in Fig. 1).
It provides details of the analytical method used to solve
the momentum and energy equations and presents results
for velocity and temperature distribution and pressure
drop. A parametric analysis is also presented and the ana-
lytical results are compared with experimental data. The
performance of a metal-foam filled tube heat exchanger is
analysed in the companion paper II.

2. Physical problem

The problem under consideration is forced convective
flow through a metal-foam filled pipe, as shown in Fig. 2.
The diameter of the pipe is 2R, and the length of the tube
is L. The wall of the pipe is uniformly heated and the fluid
(such as water or air) is assumed to flow through the open-
cell metal-foam filled area, removing heat from the wall of
the pipe without phase change.

3. Mathematical formulations and their analytical solutions

3.1. Mathematical formulations

As mentioned earlier, the momentum equation
employed is based on the Brinkman-extended Darcy model
[10] and the energy equations for both fluid and solid used,
r

ω

z 
r

R 

Fig. 2. Schematic diagram of
are based on the two-equation non-equilibrium heat trans-
fer model proposed by Calmidi and Mahajan [4]. These are
detailed below:

• Mass conservation equation

rðq~V Þ ¼ 0. ð1Þ
• Momentum equation (Brinkman–Darcy model)

1

e
hð~V � rÞqf

~V i ¼ �rhpif þ
lf

e
r2h~V i � lf

K
h~V i. ð2Þ

h i means a volume averaged value.
• Energy balance equations for the solid and fluid
a m
0 ¼ r � fkserhT sig � hsf ~aðhT si � hT fiÞ; ð3Þ
hqifCfh~V irT f ¼ r � fðkfe þ kdÞ � rhT fig

þ hsf~aðhT si � hT fiÞ. ð4Þ

In Eq. (2), ~V is the velocity vector, e is the porosity of
the porous medium, p is the pressure, lf is the fluid vis-
cosity and K is the permeability of the porous medium.
In Eq. (3), ea is the surface area density of the metal-
foam and hsf is the interfacial heat-transfer coefficient
between the solid surface and the fluid. Cf and qf are
the heat capacity and density of fluid respectively,
whereas kse and kfe are the effective thermal conductiv-
ities of solid and fluid.
In the analysis it is assumed that the flow is both
hydraulically and thermally fully developed. All thermo-
physical properties of the solid and fluid, e.g., thermal con-
ductivity, density, specific heat and viscosity, are assumed
to be temperature independent. Natural convection and
radiation are negligible. The porous medium is assumed
homogeneous and isentropic, and thus the problem can
be considered axially symmetrical. In addition, Calmidi
and Mahajan [4] and Phanikumar and Mahajan [7]
concluded from their studies that the enhancing effect of
thermal dispersion (kd) is extremely low due to the rela-
tively high conductivity of the solid matrix. Therefore,
The term kd is dropped to simplify the analysis. Due to
the assumption of fully developed flow, the equation
oT w

oz ¼
oT f

oz ¼
oT s

oz ¼ const holds. Based on these assumptions,
Eqs. (1)–(4) can be simplified as follows:
z

L 

etal-foam filled pipe.
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0 ¼ � dp
dz
þ lf

e
o2u
or
þ 1

r
ou
or

� �
� lf

K
u; ð5Þ

0 ¼ kse

o2T s

or2
þ 1

r
oT s

or

� �
� hsf~aðT s � T fÞ; ð6Þ

eqfCfu
dT f

dz
¼ kfe �

o2T f

or2
þ 1

r
oT f

or

� �
þ hsf~aðT s � T fÞ; ð7Þ

where brackets h i are dropped for simplicity, and u is the
velocity along the z direction, Vz.

For the metal-foam filled pipes directly heated from out-
side surface with constant heat flux, the applied heat is
transferred to the solid and fluid phases by conduction
and convection. As discussed by Zhao et al. [14] and Lee
and Vafai [15], because the thermal conductivity of the thin
metal wall of pipe is significantly higher than that of the
fluid the temperature at the interface between the metal-
foam and the substrate can be considered to be uniform
regardless of whether it is in contact with the solid or fluid.
Consequently, the boundary conditions of metal-foam
filled pipe can be specified as follows:

When r ¼ R; u ¼ 0; T s ¼ T f ¼ T w; ð8Þ

When r ¼ 0;
ou
or
¼ oT f

or
¼ oT s

or
¼ 0; ð9Þ

where Tw implies the temperature at the interface. This
temperature is not known a priori and must be obtained
as part of the solution.

To proceed further, there are parameters in the above
equations that need to be established. They are permeabil-
ity (K), effective thermal conductivities of the solid and
fluid phases (kse and kfe), surface area density (ea) and the
interfacial heat-transfer coefficient (hsf).

• Permeability (K)
The permeability (K) of metal-foams, which is the key
parameter for solving the momentum equation, has been
investigated by several researchers. Calmidi [3] proposed
a specific formulation for K based on experimental data.

K

d2
p

¼ 0:00073ð1� eÞ�0:224ðd f=dpÞ�1:11
; ð10Þ

where dp is the pore size (dp = 0.0254/ppi meter, ppi:
pores per inch), df is the fibre diameter of metal-foams

df

dp
¼ 1:18

ffiffiffiffiffiffiffiffi
ð1�eÞ

3p

q
1

1�e�ðð1�eÞ=0:04Þ

� �� �
[5].

• Effective thermal conductivities of the solid and fluid
(kse and kfe)
To determine the effective thermal conductivity of open-
cell metal foams, ke, the following correlation, which is
based on the three-dimensional cellular morphology,
was proposed by Boomsma and Poulikakos [2].

ke ¼
ffiffiffi
2
p

2ðRA þ RB þ RC þ RDÞ
; ð11Þ
where

RA ¼
4k

ð2e2 þ pkð1� eÞÞks þ ð4� 2e2 � pkð1� eÞÞkf

;

RB ¼
ðe� 2kÞ2

ðe� 2kÞe2ks þ ð2e� 4k� ðe� 2kÞe2Þkf

;

RC ¼
ð
ffiffiffi
2
p
� 2eÞ2

2pk2ð1� 2e
ffiffiffi
2
p
Þks þ 2ð

ffiffiffi
2
p
� 2e� pk2ð1� 2e

ffiffiffi
2
p
ÞÞkf

RD ¼
2e

e2ks þ ð4� e2Þkf

;

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p
ð2�ð5=8Þe3

ffiffi
2
p
�2eÞ

pð3�4e
ffiffi
2
p
�eÞ

q
, e = 0.339.

After the overall effective thermal conductivity is
obtained, the effective solid conductivity, kse, can be
established by setting kf = 0. Similarly, the effective fluid
conductivity, kfe, can be determined by setting ks = 0.

• Surface area density (ea)
The solid–fluid interfacial surface area density for an
array of parallel cylinders intersecting in three mutually
perpendicular directions, whose cylinder diameter is d

and interval is a, is 3pd
a2 . However, the topology of

metal-foams is different from the cross-cylinder. Fur-
thermore, the cross-section of the fibre is not circular
when the porosity of metal-foams is higher than 0.85.
Shape factors must be introduced when the formula
of cross-cylinder is used to simplify the structure
of metal-foams, which are a = 0.59dp, and d =
(1 � e�((1�e)/0.04)) Æ df [3]. Then the surface area density
of metal-foams becomes

~a ¼ 3pd fð1� e�ðð1�eÞ=0:04ÞÞ
ð0:59dpÞ2

. ð12Þ

• The interfacial heat-transfer coefficient (hsf)
The interfacial heat-transfer coefficient for packed beds
is usually calculated using a correlation proposed by
Wakao et al. [16]. However, no such general correlation
exists for metal-foams. So the following correlation
developed by Zukauskas [17], which is valid for stag-
gered cylinders, is used to estimate hsf

Nusf ¼
hsf d
kf

¼
0:76Re0:4

d Pr0:37; ð100
6 Red 6 4� 101Þ;

0:52Re0:5
d Pr0:37; ð4 � 101

6 Red 6 103Þ;
0:26Re0:6

d Pr0:37; ð103
6 Red 6 2� 105Þ;

ð13Þ
where Red is the local Reynolds number, Red = ud/m.
For metal foams, as discussed above, the cross-section
of the fibres is not circular and to account for this the
shape factor, d = (1 � e�((1�e)/0.04)) Æ df, is introduced.

3.2. Normalisation of equations

Equations and boundary conditions can be non-dimen-
sionalised by introducing the following dimensionless
variables:
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Da ¼ K=R2; w ¼ r=R; P ¼ K
lf um

dp
dz
; h ¼ T � T w

qwR=kse

;

hs ¼
T s � T w

qwR=kse

; hf ¼
T f � T w

qwR=kse

;D ¼ hsf ~aR2=kse;

C ¼ kfe

kse

; U ¼ u
um

; ð14Þ

where qw is the heat flux over the surface of the pipe and u

and um are the local velocity and mean velocity along the
axial direction, respectively.

For fully developed flow subject to a constant heat flux,
the dimensionless equations and boundary conditions can
be expressed as follows.

• The dimensionless momentum equation:

U ¼ �P þ Da
e

o2U
ow
þ 1

w
oU
ow

� �
. ð15Þ

• The dimensionless energy balance equations for the
solid and fluid:

0 ¼ o2hs

ow2
þ 1

w
ohs

ow
� Dðhs � hfÞ; ð16Þ

2U ¼ C � o
2hf

ow2
þ 1

w
ohf

ow

� �
þ Dðhs � hfÞ. ð17Þ

• The dimensionless boundary conditions are:

U ¼ hs ¼ hf ¼ 0 at w ¼ 1; ð18Þ
dU
dw
¼ ohs

ow
¼ ohf

ow
¼ 0 at w ¼ 0. ð19Þ
3.3. Analytical solution of the equations

The above equations can be treated as equations of the
form o2Y

oz2 þ 1
z

oY
oz � Y ¼ 0 and o2Y

oz2 þ 1
z

oY
oz ¼ C. The latter is easy

to solve. The standard solutions of the former, J0(z) and
Y0(z) are given in the Appendix. Based on these, Eqs.
(15)–(17) can be analytically solved under boundary condi-
tions (18) and (19).

3.4. Dimensionless velocity distributions

The velocity distribution can be obtained by solving the
momentum Eq. (15), as

U ¼ P
J 0

ffiffiffiffi
e

Da

p
w

� �
J 0

ffiffiffiffi
e

Da

p� � � P . ð20Þ

From the continuum equation the following relationship is
valid 1

A

R
A U dA ¼ 1, namely,

1

p

Z 2p

0

Z 1

0

P J 0

ffiffiffiffiffiffi
e

Da

r
w

� �� �
J 0

ffiffiffiffiffiffi
e

Da

r� ��
wdwdh ¼ 1.
Hence

P ¼
J 0ð

ffiffiffiffi
e

Da

p
Þ

2
ffiffiffiffi
Da
e

q
J 1ð

ffiffiffiffi
e

Da

p
Þ � J 0ð

ffiffiffiffi
e

Da

p
Þ

. ð21Þ

From Eq. (14), a formulation for the pressure drop can be
deduced as

dp
dz
¼ lf um

K
P . ð22Þ

Integrating both sides, Eq. (22) becomes

Dp ¼
Z L

0

lf um

K
P dz ¼ lf um

K
PL. ð23Þ

Finally, the friction factor is given by

f ¼ Dhpi2R
Lqfu2

m=2
¼ 4lf

Kqfum

P � R ¼ 8P
Da � Re

. ð24Þ
3.5. Dimensionless temperature distributions

After the velocity distribution is determined, the temper-
ature profile can be obtained from the solution of Eqs. (16)
and (17).

hs ¼ 2P � 1

4
w2 þ

Da
e

J 0ð
ffiffiffiffi
e

Da

p
Þ

J 0

ffiffiffiffiffiffi
e

Da

r
w

� � 

þ 1

4
� Da

e

!
� Chf ð25Þ

hf ¼
2P

C þ 1
� 1

4
w2 þ

Da
e

J 0

ffiffiffiffi
e

Da

p� � J 0

ffiffiffiffiffiffi
e

Da

r
w

� �0@
þ 1

4
� Da

e
� B � 1

J 0

ffiffiffiffiffiffiffiffiffiffiffi
ðCþ1ÞD

C

q� � � J 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC þ 1ÞD

C

r
w

 !

þA � 1

J 0

ffiffiffiffi
e

Da

p� � J 0

ffiffiffiffiffiffiffiffiffiffi
e

Da
w

r� �
þ 1

ðC þ 1Þ � D

1A; ð26Þ

where A ¼ 1
ðC� e

Da�ðCþ1Þ�DÞ and B ¼ C� e
Da

ðCþ1Þ�D�ðC� e
Da�ðCþ1Þ�DÞ. There-

fore, B� A ¼ 1
ðCþ1Þ�D.

3.6. Heat transfer performance

From the analytical solutions for velocity and tempera-
ture distributions, the overall Nusselt number of a metal-
foam filled pipe can be determined as

Nu ¼
�h
kf

2R ¼ 2Rqw

kfðT w � T f ;bÞ
¼ � 2kse

kfhf;b

¼ � 2

ðkf=kfeÞ � Chf;b

;

ð27Þ
where �h is the overall heat-transfer coefficient between the
surface and the fluid based on the bulk-mean temperature
and hf,b is the dimensionless bulk-mean fluid temperature
averaged along the cross-section of the channel, given by
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hf ;b ¼
T f ;b � T w

qwR=kse

¼
R 2p

0

R 1

0
Uhfwdwd#R 2p

0

R 1

0 Uwdwd#
¼ 2

Z 1

0

Uhfwdw

¼ 4P 2

C þ 1
Aþ Da

e

� �Z 1

0

J 0

ffiffiffiffi
e

Da

p
w

� �
J 0

ffiffiffiffi
e

Da

p� �
0@ 1A2

wdw

0B@

� B
Z 1

0

J 0

ffiffiffiffiffiffiffiffiffiffiffi
ðCþ1ÞD

C

q
w

� �
J 0

ffiffiffiffiffiffiffiffiffiffiffi
ðCþ1ÞD

C

q� � J 0

ffiffiffiffi
e

Da

p
w

� �
J 0

ffiffiffiffi
e

Da

p� � wdw

� 1

4

Z 1

0

J 0

ffiffiffiffi
e

Da

p
w

� �
J 0

ffiffiffiffi
e

Da

p� � w3 dw� 2Aþ 2
Da
e
� B� 1

4

� �

�
J 1

ffiffiffiffi
e

Da

p� �
J 0

ffiffiffiffi
e

Da

p� � ffiffiffiffiffiffi
Da
e

r
þ B

J 1

ffiffiffiffiffiffiffiffiffiffiffi
ðCþ1ÞD

C

q� �
J 0

ffiffiffiffiffiffiffiffiffiffiffi
ðCþ1ÞD

C

q� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

ðC þ 1ÞD

s

þ 1

2
Aþ Da

e
� B� 1

8

� �1CA. ð28Þ

From the above analytical solutions, it can be seen that the
non-dimensional velocity (U) is a function of

ffiffiffiffi
e

Da

p
. Simi-

larly, the non-dimensional temperatures (hs and hf) and
the overall Nusselt number (Nu ¼ �h

kf
2RÞ of metal-foam

filled pipes are the functions of
ffiffiffiffi
e

Da

p
,
ffiffiffiffiffiffiffiffiffiffiffi
ðCþ1ÞD

C

q
, and C. From

the above Eqs. (10)–(14), the following results can be
deduced, asffiffiffiffiffiffi

e
Da

r
¼ f1ðeÞ

R
dp

; ð29Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC þ 1ÞD

C

r
¼ f2ðeÞððC þ 1ÞRen

dPr0:37Þ1=2 R
dp
; ð30Þ

and

C ¼ kfe

kse

¼ fcðeÞ
kf

ks

; ð31Þ

where Red¼ Re�d
2R ¼0:5Redp

R
df

dp
ð1�e�ðð1�eÞ=0:04ÞÞ¼0:5Redp

R fdðeÞ,
f1(e), f2(e), fd(e), and fc(e) are all a function of porosity
(e). Therefore, the heat transfer performance depends on
four dimensionless parameters, R/dp (geometry parameter),
e (porosity of metal foam), Re (Reynolds number, 2uR/t)
and kf/ks (fluid–solid thermal conductivity ratio).

4. Results and discussion

4.1. Velocity distributions

From the analytical solutions, it is shown that the non-
dimensional velocity distribution (u/um), varies with R/dp

(geometry parameter) and e (porosity of metal foam).
Fig. 3 shows the velocity distribution in metal-foam filled
pipes of different geometries and pore sizes. It can be seen
that the metal foam can homogenize the flow compared to
hollow channel flows, and the boundary layer becomes
thinner with the increase of the ratio of tube diameter to
pore size (R/dp).

4.2. Pressure drop

This section considers the effect of different parameters
on pressure drop along the length of the pipe. From Eq.
(23), the pressure drop is a function of permeability (K)
of the metal foam which in turn depends on the pore den-
sity (ppi) and porosity (e). Consequently, the pressure drop
of single-phase flow through the pipe increases exponen-
tially with pore density (i.e. the decrease of pore size), as
shown in Fig. 4. It is noted that the pressure drop of air
through two pipes of different diameters but the same pore
density is almost identical indicating that the pressure drop
is mainly caused by the solid structure of the metal foam
rather than the pipe wall. Fig. 5 shows the variation of
pressure drop with the porosity at selected pore densities.
As expected, the pressure drop increases with the decrease
of porosity and increase in the pore density.

4.3. Temperature distribution

From the analytical solutions, it is observed that the
solid and fluid temperature (T–Tw/qw) distributions vary
with 1/dp (pore density), R (pipe radius), e (porosity of
metal foams), Re (Reynolds number), kf and ks (fluid and
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solid thermal conductivities). Figs. 6 and 7 show the effects
of pore density and porosity on solid and fluid temperature
distributions in metal-foam filled pipes, respectively.

Fig. 6 presents both the solid and fluid temperature dis-
tributions at selected pore densities (ppi). The pore density
has a lower effect on the solid temperature distribution
compared to the fluid temperature distribution. The tem-
perature difference between the solid and fluid decreases
sharply as the pore density (ppi) increases. With all other
parameters constant, the increase of pore density leads to
an increase in the wetted area available for the heat transfer
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between the solid and fluid phases. This leads to a higher
local heat-transfer coefficient as well as a higher interfacial
surface density (shown in Eq. (12)). Both are responsible
for the reduction of the temperature difference between
the solid and fluid.

Fig. 7 reveals that the variation of the porosity of metal-
foams has a significant effect on both solid and fluid tem-
perature distributions. As shown in this figure, the solid
and fluid temperatures decrease much more quickly from
the heated surface to the centre as the porosity of the
metal-foam increases from 85% to 95%, while the temper-
ature difference between the solid and fluid reduces slightly.

4.4. Overall heat transfer in metal-foam filled pipes

To examine the heat transfer rate between the heated
wall and the fluid, the overall Nusselt number, defined as
Nu ¼ �h

kf
2R, was used (Eq. (27)). From the analytical solu-

tions, it is shown that the Nusselt number depends on four
parameters: e (porosity), R/dp (geometry parameter), kf/ks

(fluid–solid thermal conductivity ratio) and Re (Reynolds
number). Figs. 8–13 present the effects of these parameters
on the overall heat transfer coefficient (Nusselt number) for
metal- foam filled pipes.

4.4.1. Effect of porosity

Fig. 8 shows the effect of porosity on the overall heat
transfer coefficient. The Nusselt number increases gradu-
ally with the decrease of porosity, as expected. For a given
kf/ks
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pore density (ppi), the fibre diameter and associated effec-
tive thermal conductivity increase with decreasing porosity.

4.4.2. Effect of pore size

It is shown in Fig. 9 that the effect of pore size
(dp = 0.0254/ppi meter) on heat transfer is significant.
The Nusselt number sharply increases when pore density
(ppi) increases, i.e. pore size decreases. For a given poros-
ity, when the pore size decreases, the fibre diameter
decreases correspondingly. This enlarges the interfacial sur-
face density, which in turn enhances heat transfer from the
metal-foam to the fluid. However, as shown in Figs. 10–12,
the effect of pore density on the overall heat transfer coef-
ficient varies with different fluid/solid conductivity ratio
(kf/ks). From Fig. 10, it is evident that the pore density
(ppi) has a very limited effect on Nusselt number when
kf/ks is larger than 0.001.

4.4.3. Effect of thermal conductivity ratio

When the solid thermal conductivity is close to that of
the fluid (kf/ks > 0.1), as shown in Fig. 10, the use of
metal-foams has little effect on overall heat transfer. When
kf/ks < 0.1, the overall heat transfer (Nusselt number) rises
significantly with the increase of the solid thermal conduc-
tivity ks, (see Fig. 11) and decrease of kf/ks down to a value
of 0.00001. At relatively high values of kf/ks above 0.001,
the pore density has very little effect on the Nusselt number
which implies that the main thermal resistance is that of
heat conduction through the solid fibres. At values of
kf/ks below 0.001, the Nusselt number increases with pore
density, indicating that the thermal resistance of the fluid
begins to become significant.

4.4.4. Effect of Reynolds number

In this section, the effect of Reynolds number, Re =
u2R/m, on heat transfer and temperature distribution is
examined. As shown in Figs. 11–13, the overall heat trans-
fer (Nusselt number) will rise with the increase in Reynolds
number. The increased Reynolds number leads to a higher
local heat-transfer coefficient, and in turn this enhances the
heat transfer between the solid and fluid.

From the above results, it can be concluded that the
overall heat transfer coefficient in metal-foam filled pipes
depends on both the conduction heat transfer through
the solid fibres of the metal-foam and convection heat
transfer from the solid (fibres and wall) to the fluid. In
other words, the overall thermal resistance can be divided
into two parts, thermal resistance of solid and that of the
fluid. The former is related to the porosity of the metal-
foam, the diameter of pipe and the thermal conductivity
of the foam. The latter is influenced by the properties of
the fluid and interface area between solid and fluid. The
increase of relative density (=1-porosity) and pore density
of metal foams can greatly increase the conduction area of
the solid fibres and the convection heat-transfer area,
thereby reducing thermal resistance and enhancing the
overall heat transfer. Therefore, in order to effectively
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improve the overall heat transfer performance, the control-
ling thermal resistance between the metal-foam and fluid
needs to be identified and minimised.

4.5. Comparison with experimental data

No experimental data has been published in the open lit-
erature, as yet, for heat transfer in metal-foam filled pipes.
However, some experimental results are available for chan-
nel flows. Zhao et al. [5,14] conducted experimental studies
for steel alloy (FeCrAlY) and copper foam channels. The
channel width was ten times the channel height, so essen-
tially the study could be considered two-dimensional with
the channel height being the length scale that characterized
the heat transfer behavior. This section presents a compari-
son between experimental results for the channel section and
analytical results for the pipe section shown in Fig. 14. To
make the comparison physically meaningful, both the plate
channel and the pipe were assumed to have been filled with
the same metal foam. The contact thermal resistance was
taken into account through the experimental determination
of the thermal conductivity of the metal-foam samples used
in the investigation [5]. Modeling therefore took it into
account by using relevant thermal conductivity for each
sample. The diameter of the metal-foam filled pipe was also
set to be equal to the height of plate channels thereby having
the same characteristic length. The tested plate channels
Table 1
Summary of microstructures and thermal conductivities of compared samples

Sample s-1 s-2

Foam FeCrAlY FeCrAlY
Pore size (ppi) 10 10
Porosity 0.943 0.857
Thermal conductivity (ks, W/mK) 26 20
were uniformly heated from both bottom and top surfaces,
whilst the pipes were assumed to have been uniformly heated
from the outside surface.

To widen the range of comparison, two groups of sam-
ples were chosen. One was made of copper and the other
from steel alloy FeCrAlY. The details of properties of each
sample are given in Table 1. Fig. 15 shows a compari-
son between the analytical results for pipe flows and exper-
imental data for channel flows. It can be seen that for all
samples modeling and experimental results exhibit very
similar trends. The heat transfer coefficients obtained from
[5]

s-3 s-4 s-5 s-6

FeCrAlY Copper Copper Copper
30 10 30 60
0.898 0.933 0.956 0.943
20 310 300 320



2760 W. Lu et al. / International Journal of Heat and Mass Transfer 49 (2006) 2751–2761
analytical results are slightly smaller than those obtained
from the experiments. This can be attributed to the simpli-
fication of the governing equations, i.e. the omission of axial
thermal conduction in the energy equation and inertial term
in the momentum equation, experimental errors, as well as
the rather simplified comparison of experimental results for
channel flow and analytical results for pipe flow. Compari-
son of analytical and experimental results for plain and
metal-foam filled tubes (Fig. 15) also shows that the use
of metal-foams greatly enhances heat transfer performance.

5. Conclusion

In this paper, the heat transfer performance of metal-
foam filled pipes has been analyzed using the Brinkman-
extended Darcy momentum model and the two-equation
heat transfer model for porous media. Analytical solutions
for temperature and velocity distributions have been carried
out for constant heat flux boundary conditions. The effects
of various metal-foam parameters on heat transfer have
been examined. The results show that the overall Nusselt
number of the metal-foam filled pipe increases with the
increase of relative density (1-porosity) or pore density
(ppi), especially when the thermal conductivity of the solid
is much higher than that of the fluid. Although metal-foams
with low porosity and small pore size (i.e. high pore density)
are advantageous for achieving high heat transfer perfor-
mance, pressure drop will be higher compared to that of
plain tubes. It is also shown that for low Reynolds numbers
the effect of the thermal conductivity of the foam on heat
transfer is quite small and hence cheaper, low thermal con-
ductivity foams can be used. When low thermal conductiv-
ity foams are employed the effect of pore density is quite
small and thus high porosity foams can be used which will
also lead to lower pressure drop. Compared to plain (hol-
low) tubes, the use of metal-foams can enhance heat trans-
fer performance significantly, up to forty times.
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Appendix A. General solutions of the partial differential

equation

For the differential equation of form of

z2 � o
2Y
oz
þ z � pðzÞ � oY

oz
þ qðzÞ � Y ¼ 0 ðA:1Þ
which is one of the classical functions of mathematical
physics [18]. One solution of this equation is: f ðzÞ ¼
zl
P1

n¼0cnzn. Assuming p(z) = 1 and q(z) = �z2, dividing
both sides by z2 and simplifying, Eq (A. 1) takes the form

o2Y
oz
þ 1

z
oY
oz
� Y ¼ 0 ðA:2Þ

which should be solved in this paper.
Based on the solution of (A. 1) the solution of (A. 2) is

J 0ðzÞ ¼
X1
n¼0

1

ðnþ vÞ!n!

1

2
z

� �2n

. ðA:3Þ

A second solution of Eq. (A. 1) is

f ðzÞ ¼ C � J 0ðzÞ lnðzÞ þ zl2

X1
n¼0

dnðzÞ � zn.

Applying this to Eq. (A. 2) we get

Y 0ðzÞ ¼ J 0ðzÞ ln
1

2
z

� �
þ
X1
n¼0

F n

ðnþ 1Þ!ðnþ 1Þ!ðnþ 1Þ
1

2
z

� �2nþ2

;

ðA:4Þ

where, F n ¼ nþ1
n F n�1 � 1 and F 0 ¼ �1.

Therefore, the J0(z) and Y0(z) are two solutions for
Eq. (A. 2).

For J 1ðzÞ ¼ J 00ðzÞ, and Y 1ðzÞ ¼ Y 00ðzÞ, J1(z) and Y1(z) can
be determined as

J 1ðzÞ ¼
1

2
z

� �X1
n¼0

1

ðnþ vÞ!n!

1

2
z

� �2n

ðA:5Þ

Y 1ðzÞ ¼ J 1ðzÞ ln
1

2
z

� �
þ 1

2

X1
n¼0

1

n!n!

1

2
z

� �2n�1

þ 1

2

X1
n¼0

F n

ðnþ 1Þ!ðnþ 1Þ!
1

2
z

� �2n

. ðA:6Þ

Accordingly, the form of the solutions, (z Æ J1(z)) 0 = z Æ J0(z)
and (z Æ Y1(z)) 0 = z Æ Y0(z) can be obtained.
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